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Abstract 

We are building a biomedical information resource consisting of digitized x-ray images and 
associated textual data from national health surveys. This resource, the Web-based Medical 
Information Retrieval System, or WebMIRS, is currently in beta test. In a future WebMIRS 
system, we plan to have not only text and raw image data, but quantitative anatomical feature 
information derived from the images and capability to retrieve images based on image 
characteristics, either alone or in conjunction with text descriptions associated with the images. 
Our archive consists of data collected in the second and third National Health and Nutrition 
Examination Surveys (NHANES), conducted by the National Center for Health Statistics. For 
the NHANES II survey, the records contain information for approximately 20,000 participants. 
Each record contains about two thousand data points, including demographic information, 
answers to health questionnaires, anthropometric information, and the results of a physician’s 
examination. In addition, approximately 10,000 cervical spine and 7,000 lumbar spine x-rays 
were collected. WebMIRS makes the text and images retrievable. Only raw images are 
returned; no quantitative or descriptive information about the images is stored in the database. 
We are conducting research into the problem of automatically or semi-automatically 
segmenting spine vertebrae in these images and determining vertebral boundaries with enough 
accuracy to be useful in classifying the vertebrae into categories of interest to researchers in 
osteoarthritis. 

1. Introduction 

We have described the architecture and characteristics of the WebMIRS system which 
provides access to the NHANES II images, in previous papers [1-2].The images in the 
NHANES II survey were collected primarily for the study of osteoarthritis and degenerative 
disc disease. Biomedical features of interest to researchers in these areas have been identified 
by two workshops conducted at NIH, and consist of anterior osteophytes, disc space narrowing, 
and subluxation. A database containing quantitative and descriptive image information that 
allows intelligent search for images that show varying degrees of these features is expected to 
be valuable for the osteoarthritis and related research communities. In addition, published 
research work [3-4] in the field of vertebral morphometry suggests that a database with 
quantitative measures of vertebral dimensions may be useful for purposes such as studies in 
occurrence of spinal fracture and estimation of normative values for vertebral size. 

In order to derive such information directly from the images, detailed analysis and 
measurement of each image is required. Due to the prohibitive cost of manually carrying out 
such a process for large image archives such as the 17,000 images in our collection, we are 



conducting research into methods for automating or semi-automating the process. In this paper, 
we describe work toward this goal, which consists of applying active shape modeling (ASM) 
techniques to the problem of locating anatomical structures (primarily vertebrae) within the 
images. 

2. Approach 

Active shape modeling (ASM). The purpose of ASM is to identify the best match to an 
object model from possible objects contained within a given image. The object model has two 
components: a shape  model and grayscale  model. The shape model is created from statistics 
(mean and covariance) of (x,y) coordinate values of points that lie on the boundaries of samples 
of the object. In our case, we sampled boundary points on particular vertebra (C2 and C3) 
boundaries in cervical spine images. The mean value of the sample shapes becomes the mean 
shape for the shape model. The covariance of the sample shapes is used to constrain the shapes 
to which ASM may converge. The grayscale model is created by sampling the grayscale 
profile (or grayscale difference profile) along normals to each of the points that define a sample 
boundary. The statistics of these samples are used to estimate probability density functions for 
the grayscale profiles at each boundary point in the shape model. Hence, we have a way of 
estimating the expected grayscale profile at each boundary point. ASM is an iterative 
algorithm; it is initialized by setting the current shape estimate to the mean shape, and choosing 
a priori values for scale, rotation, and position of the mean shape within the image to be 
searched. Then, at each step the current shape is allowed to deform by using grayscale model 
statistics to move each boundary point to a new position having a grayscale profile closer to the 
expected grayscale profile for that boundary point. The shape model covariance is used to 
constrain the new shape to values close to the original sample shapes. Convergence is defined 
by the step-to-step changes in shape, scale, rotation, and position falling below a tolerance 
value. 

A general reference to ASM as we have used it is given in [5]. Smyth [6] has shown 
success in applying ASM techniques to the location of lumbar spine vertebrae acquired by dual 
x-ray absorptiometry (DXA). We are taking a similar approach to investigate the use of ASM 
for location of vertebrae within digitized x-ray film. We are extending work that we reported in 
[7]. 

The sample images for our work are chosen from the NHANES II x-ray image collection 
referenced above. From these samples we have collected landmark data on the boundaries of 
cervical spine C2 and C3 vertebrae; the mean and covariance of these landmarks comprise the 
basic statistical data used for the ASM searches. 

3. Results 

To make an initial assessment of ASM performance on these images, we have concentrated 
on one boundary area (C2/C3) and on one complete vertebra (C3) in the cervical spine. The 
model we have constructed represents the inferior (bottom) edge of C2, which is the topmost 
vertebra structure consistently capable of being visually detected in the images; and the 
complete boundary of C3. To model these shapes, we used 81 landmark points, which is 
roughly consistent with the number of landmarks used by Smyth [6] for DXA images of the 
lumbar spine. Our model used 40 1462x1755 cervical spine images as input for a total of 3240 
manually-collected points. Not only does this data collection involve a nontrivial amount of 
labor, but unless care is taken, the collected points may not exhibit any mathematical 



consistency as edge points. For example, points which are selected as edge points strictly on 
the basis of their visual appearance may lie several pixels from the edge point as defined by 
maximum gradient, or by maximum derivative along a given line segment (such as a line 
segment normal to a boundary). On the other hand, trying to collect points in a completely 
automated fashion with a conventional edge detector results in many spurious points that have 
to be manually removed. For these reasons, we created a software tool (LMARK) that allows 
manual collection of the landmark points, but provides computer assistance. LMARK 
operation is illustrated in Figures 1-2, which show the two main windows of the tool. Figure 1 
is the image display window that shows the region of interest (ROI) around a particular vertebra 
as well as the landmark points as they are collected. The image in the ROI may have its 
contrast enhanced by histogram equalization. In Figure 1 one of the points is “current” and has 
an intersecting line segment that is approximately normal to the vertebra edge. The window in 
Figure 2 displays the smoothed derivatives of the grayscale values along this segment. An 
additional window (not shown) displays a graph of the smoothed grayscale values along this 
same segment. The user specifies on the command line (not shown) which point along the 
profile should be take as the edge, or landmark, point. Typically, the point with maximum 
absolute derivative is selected, which would be point 26 in Figure 2. When this point is 
selected, it is marked in red on the graphs in the grayscale profile and the derivative windows, 
and the point also appears marked in the image window. If the image window shows the 
selected point is in fact not on the edge (as sometimes happens due to noise or a digitized 
scratch on the image) the user may adjust the choice of the selected point. 

Figure 3 shows the results of consistency testing for boundary detection of C2/C3 in these 
40 images. That is, we built a model using the entire 40 image set, then used the model to 
detect C2/C3 in each of the images that contributed to the model. Presumably, if the image data 
is of sufficient quality, and the boundary detection method is sound, we should get reasonably 
good boundary locations. The Figure 3 plot shows the results obtained, in the form of average 
point-to-point errors as measured between boundary points for the converged boundary solution 
for each image, and the “known truth” boundary points that were manually collected. For 16 of 
the 40 images, the errors were less than 15 pixels, which corresponds to an error of less than 
1/10 inch in the original image. Figure 4 illustrates one of the cases for which convergence was 
accurate. The converged solution overlays the truth boundary so well that the two are 
indistinguishable in the figure. For the remaining images most of the erroneous solutions 
included a boundary segment close to the truth boundary, connected to one or more segments 
not on the truth boundary, but rather on other visually-detectable edges, such as 
tissue/background edges or even edges produced by grayscale intensity variation within a 
vertebra. Figure 5 illustrates such a case, where part of the converged solution lies on a 
tissue/background boundary, part on curves formed by contrast differences that are actually 
within the interior regions of vertebrae, and part lies on true vertebral boundaries. 

To get an indicator of how we might expect the ASM algorithm to perform on at least a 
subset of the cervical spine images, we used only the 16 images that performed best in the 
above test to build a C2/C3 model. The results of a consistency test that searched each of these 
16 images for the model created using the same 16 images is shown as the bottom, solid-line 
curve in Figure 6. With the exception of one image, the ASM solutions were all better than the 
ASM solutions for these same images when the 40-image model was used. The solution for the 
exceptional image exhibited strong sensitivity to initial positioning of the model on the image, 
and a tendency to attract to the C3/C4 area, rather than C2/C3. For this image, the error value 
shown in Figure 6 is the mean error resulting from 10 different random initial positionings of 



the model. With this one exception, the consistency errors remained below the 1/10 inch level 
for mean point-to-point error. 

We then used this 16-image model to perform cross-validation testing by iteratively (1) 
deleting one image from the model; (2) building a model with the remaining 15 images; and (3) 
searching for the model shape within the image that was omitted. This is expected to give an 
indicator of how the ASM algorithm could be expected to perform on images that it has not 
been trained on, but which are similar to the 16-image test set. These cross-validation results 
are shown as the top (dashed) line in Figure 6. For each image, the error in the ASM cross-
validation test exceeds the error in the consistency test, as would be expected, since the 
consistency model was built with all 16 images: each image being searched itself contributed 
to the statistics of the model. 

Analysis. We make the following observations: (1) Our work to date is at a preliminary 
stage. Results should be considered suggestive, but not conclusive. One reason for this is that 
the number of images sampled (40) is quite small relative to our total image population (10,000 
cervical spine images). (2) Results obtained with the 16-image model suggest that, for at least a 
significant subset of our images, mean point-to-point error bounds of 0.2-0.3 inch may be 
achievable. Even though this level of accuracy may not be of direct use for the long-term goal 
of vertebra feature classification, it is sufficient to support systems that automatically identify 
and label individual vertebra (“C2”, “C3”, etc.), and may improve as we continue our work. (3) 
The C2/C3 model that we are using is itself only a partial model for the cervical spine. One 
implication of this is that, due to similarities between the vertebral bodies, the ASM algorithm 
cannot always be expected to attract to the correct region in the vertebral column. 
Occasionally, for example, cases occur where the model converges to C3/C4, rather than 
C2/C3. These cases are expected to diminish in number or disappear as we expand the model 
to represent more of the cervical spine. (4) The question of initial conditions for the model 
remains largely unexplored. In almost all of the cases, we used the default initial state 
generated by the commercial software we were using. The sensitivity of the convergence to 
this initial state is an area requiring further investigation: how should we initialize the model 
scale, rotation, and positioning to insure or enhance its chances of lying in a region of 
convergence for the algorithm? In previous work [8] we demonstrated some initial success in 
getting basic orientation information from cervical spine images that may be useful in 
initializing ASM. We developed an algorithm that automatically places an orthogonal 
coordinate system with one axis U at the base of the skull and the perpendicular axis V 
positioned to intersect this axis at the point O (coordinate system origin) of greatest bone 
density in the spine (as defined by brightest grayscale concentration. One of our areas of 
research is to investigate whether this U/V system location algorithm is sufficiently robust for 
its use in initializing ASM searches. 

For this work we have used MATLAB 5.3 and the ASMToolkit for MATLAB. This toolkit 
has been a valuable resource in initiating work in this research area, but our work has now 
progressed to the point where certain apparent limitations in the software have surfaced. 
Examples are limitations on the number of points that our models may include, inability to 
precisely know or set initial conditions, and inability to know quantitative convergence 
measures. 



4. Conclusion 

Our goal of indexing digitized x-ray images of the cervical spine for content relevant to 
researchers in the field of spine disease and injury consists of many steps of which the first is 
to first obtain segmentation of vertebral structures using active shape modeling (ASM). 
Evaluation of the usefulness of this technology for indexing a large image collection of 
digitized x-rays such as ours is continuing. A key concern in our work is to assess the degree 
to which computerized methods may assist in the accurate derivation of such x-ray image 
content and to create a concept of human-machine interaction that exploits the strengths of both 
the human participant and computer capability for solution of this particular problem. 
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Figure 1. Landmark data collection. Figure 2. Landmark data 
Image display window showing some collection. Smoothed derivatives of 
collected landmarks. The line segment grayscale values along a normal line 
through the last point is approximately segment. Point 26 has maximum 
normal to the vertebra boundary. absolute value. 



Figure 3. Errors on 40 image test. 
Vertical axis is mean point-to-point 
distance between converged solution 
and “truth” (manually-collected 
landmarks). Horizontal axis is image 
index number. Many of the large errors 
appear to correspond to (erroneous) 
convergence to local minima. 
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The anterior of the converged 

5. of erroneous 
convergence C2/C3 40-image

model. 

solution has fixed on a tissue/background

boundary; the superior and inferior

segments of the solution have fixed on

edge curves that lie within the C3 and C4

vertebrae, respectively. The posterior

segment of the solution partially overlaps

the truth shape. (Avg. point-point error =

64.96 pixels).


Figure 4. Example of good 
convergence for the C2/C3 40-image 
model. The boundary of the converged 
shape overlays the truth boundary. (Avg. 
point-point error = 1.67 pixels.) 

Figure 6. Solid line: consistency 
test results for the C3/C4 model built 
with the best performing 16 images in 
Figure 4. Dashed line: cross-
validation test results for this model. 
Vertical axis is mean point-to-point 
distance between converged solution 
and “truth” (manually-collected 
landmarks). Horizontal axis is image 
index number. 


